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An analysis is presented that describes a model of the flow field of a rotating 
compressible fluid in a cylinder with internal sources or sinks of mass, momentum 
or energy. A solution of the mathematical model is obtained using an expansion in 
eigenfunctions of the corresponding homogeneous equation. The internal sources or 
sinks produce countercurrent flows analogous to flows generated by boundary 
conditions in the classical analysis of the problem. The application of this model to 
the flow driven by a feed stream or a scoop is discussed. Some sample calculations 
are presented that illustrate the countercurrent flow produced by sources of mass, 
the three components of momentum, energy and a mass source/sink combination. 
Calculations simulating feed introduction and a tails-removal scoop have been 
performed and the fluid-dynamics solutions have been used to calculate the optimum 
separative performance of the example centrifuge. 

1. Introduction 
The gas centrifuge is an object of much interest for the purpose of producing 

uranium enriched in the fissionable isotope 235U to be used as fuel for nuclear power 
reactors. The papers of Hoglund, Shacter & Von Halle (1979), Soubbaramayer (1979) 
and Olander (1972) provide a very good introduction to the theory of isotope 
separation by the gas-centrifuge process. The radial pressure gradient produces a 
separation in which the heavier 238UF, molecule tends to be concentrated near the 
periphery and the lighter 235UF, molecule tends to be concentrated near the axis. By 
imposing a countercurrent flow in the axial direction, the separation effect can be 
greatly enhanced over the simple radial separation. 

The primary motion of the gas in the cylinder a t  a uniform temperature is to rotate 
with the cylinder as though the gas were a solid filling the hollow cylinder. This 
primary motion is referred to as solid-body isothermal rotation. The density and 
pressure gradients are exponentially decaying functions towards the axis. A number 
of disturbing mechanisms lead to a secondary flow which has an axial countercurrent 
circulatory motion. The countercurrent flow is induced by temperature gradients on 
the cylinder boundaries, by the presence of stationary scoops for mass removal, and 
by the injection and removal of mass. Figure 1 depicts a configuration that has 
frequently been analysed in the literature (Soubbaramayer 1979). 

The separative work produced by a centrifuge has been considered by Park (1981), 
who analysed the isotope distribution and separative work without any analysis of 
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FIGURE 1. Gas centrifuge. 

the underlying fluid dynamics. Soubbaramayer & Billet (1980) have presented an 
analysis of both the fluid dynamics and the isotope separation in which the 
countercurrent flow mechanisms considered include a temperature gradient along the 
rotor wall, elevated temperatures on the two end caps, and a bottom end cap that 
is rotating a t  a slightly different frequency than the vertical wall of the rotor. The 
differentially rotating end cap is intended to simulate the action of the stationary 
bottom scoop shown in figure 1 .  The countercurrent flow induced by the injection 
of mass from the centre post has not been taken into account. 

Wood & Morton (1980) have presented an analysis that  allows the calculation of 
countercurrent flows induced by sources or sinks of mass, momentum and energy that 
are interior to the rotating gas rather than on the boundaries of the cylinder. In  this 
paper we will demonstrate how the sources and sinks can be used to simulate flows 
that can be attributed to scoops and mass injection. 

2. Fluid-dynamics model 
We will use the same notation as given in Wood & Morton (1980). The system of 

equations governing the flow are combined to give the non-homogeneous form of 
Onsager's pancake equation, which is 

(e"(e"x,,),.r),, + B 2 X y y  = F(z3 Y)? (2.1) 

where 
(Ty -21 i , )dx ' -  4 j:' M ,  dx" dx' 
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The function x is a potential function whose derivatives yield the primitive 
variables u,  v, w, p and T .  The radial variable x counts density scale heights from 
the rotor wall and is related to the radius by x = A2[1 - ( r /a ) z ] .  The axial variable 
is y = z /a ,  where a is the radius. The speed parameter is A2 = MV2/2RT, where M 
is molecular weight, V is peripheral speed, R is the universal gas constant and T is 
the temperature. The parameter 

S =  1 + e P r A 2  
2Y 

where y is the ratio of specific heats and Pr is the Prandtl number. The number 
Re = pw Va/,u, where pw is the density a t  the wall and ,u is the viscosity. The 
parameter B is then defined as B = Re&/4A6. The non-homogeneous part of 
( 2 . 1 )  contains the internal source terms for sources or sinks of mass M ,  momentum 
( U ,  V ,  W )  and internal energy T .  

In order to determine the countercurrent flow, ( 2 . 1 )  must be solved. For the 
homogeneous case, the mathematical details of the solution technique by eigenfunc- 
tion expansions have been described by Wood & Morton (1980), and a solution by 
finite elements for the homogeneous case has been given by Gunzburger & Wood 
(1980). A method for solving the non-homogeneous form of ( 2 . 1 )  with eigenfunctions 
is presented in $3. 

The source distribution and strength can be estimated for the feed injection and 
the tails-withdrawal scoop by separate analyses. An idealized model of how the feed 
gas injected from the centre post interacts with the rotating gas can be constructed 
by making some simplifying assumptions. First, we assume that the feed gas leaves 
the centre post in an azimuthally symmetric manner and that i t  is not rotating 
relative to the laboratory reference frame. Secondly, we assume that the feed gas is 
indistinguishable from the rotating gas after one collision, and that this collision 
occurs at the radial position where the mean free path is equal to a local density scale 
height. When the gas exits the hole in the feed pipe, i t  enters a vacuum and should 
undergo cooling due to  the expansion and should spread in the axial direction before 
colliding with the rotating gas. Thirdly, for this idealized model, we assume that when 
the feed gas reaches the collision location i t  has the same temperature as the mean 
temperature of the rotating gas. Fourthly, we assume a shape function for the axial 
spreading. The mathematical description of the source terms can then be given as 

S(Z3 Y) = SOG(X)H(Y), (2.3) 

where So is the strength, H(y) is the axial distribution and G(x) is tbe radial 
distribution. These functions are then used in the right-hand side of ( 2 . 2 )  in order 
to prescribe the non-homogeneous part of ( 2 . 1 ) .  

With these assumptions, the feed can be modelled as a source of mass whose 
strength can be determined from the feed rate m to the machine. The source of mass 
will induce a non-homogeneous term in the vector form of the Navier-Stokes 
equation, which will be treated as an effective sink. The simplifying assumptions 
above lead us to hypothesize a feed-gas velocity vector with only one non-zero 
component uf, which is in the radial direction. Therefore the radial momentum 
equation will have a source of strength muf and the azimuthal momentum equation 
will have an effective sink of strength -marf, where rf is the radial location of the 
collision between the feed gas and the rotating gas. Also, owing to  the source of mass, 
an effective source of internal energy will be induced with a strength given by 
+rh[(Rrf)z +@I.  
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Now the scoop is fundamentally different from the feed, since i t  imposes a drag 
on the gas whether or not mass is being removed. The drag is simply a sink of angular 
momentum, whose strength we will denote by - f, and a non-homogeneous term f ( i2rf)  
will appear as an effective source in the internal energy equation. The value off can 
be determined from an independent analysis of the scoop geometry or from an 
analysis to  optimize the separative performance. The scoop will also act as a sink of 
mass, whose strength is given by the tails-removal rate. 

3. Solution of the non-homogeneous equation 
The solution to (2.1) can be written as 

x = x c + x p .  

where xc  is the characteristic solution for the homogeneous equation and xp is the 
particular solution. In  Wood & Morton (1980) (hereinafter referred to as WM), the 
characteristic solution was obtained using separation of variables and obtaining 
eigenfunctions corresponding to  the cases where the eigenvalue is real, purely 
imaginary or zero. The sum of these three cases forms a characteristic solution capable 
of incorporating all combinations of boundary conditions of interest. 

We will obtain a particular solution based on an expansion using the end-driven 
eigenfunctions f n ( x )  presented in WM. These eigenfunctions satisfy homogeneous 
boundary conditions a t  the rotor wall and a t  the axis and form a complete 
orthonormal set. We therefore seek a particular solution 

a, 

xp(r3  Y) = an. fn(r)gn(y) ,  (3.2) 
n=1 

where the coefficients an and the function gn(y) are to be determined from the source 
distributions and shapes. I n  practice we have used only the first ten terms of this 
series. Substituting this expression into (2.1) and denoting the sixth-order differential 
operator by L,  we have 

We have used the fact that  the eigenfunctions satisfy the differential equation 

For this method of solution by eigenfunction expansion, only sources of the form 
Lf, = --a: B2fn. 

4 x 3  Y) = s o  G ( 4  H(y) (3.4) 

will be considered. Thus, if each of the five types of source is treated separately, 
F ( x ,  y) has the form 

(3.5) F(x,  Y) = F, 44 7(Y). 
From (2.2) we see that each source type must undergo certain integration or 
differentiation operations to  yield a(r) and ~ ( y ) .  For illustration, consider a source 
of axial momentum W that  has the form of (3.4). Then, the non-homogeneous term 
is given by B2A2 

F ( x ,  y) = -- 2 Re 8 ( e x  W Z X  
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Comparing this expression with (3.5) gives 

To obtain the particular solution, we use (3.3) and (3.5) to  write 

Using the orthonormality of the f n ( x ) ,  we have 

Setting this equation equal to 2an ~ ( y ) ,  we have 

Equation (3.9) can be solved by variation of parameters to obtain 

(3.10) 

(3.11) 

The coefficients a, can be determined directly from (3.10) using numerical quadrature. 
Alternatively, since (3.10) implies 

(3.12) 

the an can be determined by applying linear least-squares to the truncated series. 
We see that the particular solution as expressed by (3.2) satisfies homogeneous lateral 
boundary conditions. However, xp makes a contribution to the Ekman boundary 
conditions and must be included in the determination of the coefficients for’the 
end-driven eigenfunctions, which requires a minor modification of the analysis given 
in WM. I n  equations (6.25) and (6.26) of WM, R,(x)  and Ry,(x)  are defined in terms 
of x* = xo+ xL, which is the contribution of the characteristic solution formed from 
the zero-eigenvalue solution and the pure-imaginary-eigenvalue solution. For the 
non-homogeneous case involving sources and sinks, x* must simply be defined as 
x* = X O + X L + X P .  

4. Separation analysis 
The formulation of the isotopic-concentration gradient in the axial direction 

(z-direction) due to Onsager and Cohen and reported in Furry, Jones & Onsager (1939) 
and Cohen (1951) has often been used for predicting the separative performance of 
centrifuges in which the overall axial isotopic enrichment is large compared with the 
radial enrichment. The analysis can be found in many references, such as Hoglund 
et al. (1979), Olander (1972) and Soubbaramayer (1979). The first-order differential 
equation for the radially averaged concentration g can be written 
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where the function $9 is defined by 
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$9(r, z )  = 2nr'cwdr' 

and T is the net axial transport of light isotope, P is the product-removal rate, c is 
molar density, D is the diffusion coefficient and ' 1 c j  is the axial component of velocity. 
From this gradient equation, the separative performance of the countercurrent gas 
Centrifuge can be readily calculated given the description of the flow within the 
centrifuge. 

Since the model of the flow field is linear, solutions can be formed as linear 
combinations of other solutions. As demonstrated by Soubbaramayer (1979) and 
Soubbaramayer & Billet (1980), i t  is convenient to think of several basic flow fields 
which can be linearly combined to give a complete flow field. For example, we will 
consider four basic flow fields : 

SP 

(i) feed with all material removed through a hole in the top baffle (6 = 1 ) ;  
(ii) feed with all material removed through the bottom scoop (6 = 0);  
(iii) linear wall temperature with end-to-end gradient AT = 1 K ;  
(iv) scoop with momentum sink of 1 dyne. 

As shown in (4.1) the separation depends on the function 9, and each type of drive 
I n  (i) and (ii) 6 is the cut defined as the product rate divided by the feed rate. 

will have its own $9 which we will denote by Yk. Therefore we are interested in 

4 

k - 1  
g ( T 3  z )  = dkgk(r7 z ) ?  (4.2) 

where the dk are constants. 
From the description of the four flow fields, d ,  and d ,  can be chosen to  give any 

feed rate and cut desired, d ,  will yield the temperature gradient, and d ,  will yield 
the amount of scoop drive. For example, these constants can be chosen in a manner 
that will yield the solution of (4.1) that  produces the optimum separative work. 

5. Computational results 
We have attempted to study the secondary flow patterns induced by sources or sinks 
internal to the flow. I n  order to simplify the problem we have tried to  remove the 
geometry of the source distribution from the analysis and so we have used idealized 
distribution functions. From a mathematical-analysis viewpoint, a very useful 
distribution is provided by the Dirac delta function. However, the discontinuous 
nature of this function produces Gibb's phenomena when the truncated eigenfunction 
expansion solution is used unless extra analysis is used. I n  appendix A a method of 
smoothing is presented which is easy to apply to this problem and allows the radial 
dependence of the source function to be provided by a delta function. Therefore in 

(5.1) 
(2.3) we have taken 

where x* is the radial location of the source. It should be clear that, since the model 
of the fluid dynamics has assumed that the flow is axisymmetric, the source 
distribution is a ring in three dimensions. 

For the axial distribution, experience has shown that the most prudent way to get 
smooth numerical results is to use an approximation to  the delta function. We have 
found that a triangle of unit area yields results with only a few terms in the expansion 
and are much smoother than with a delta function and many more terms. Therefore 

G ( x )  = ~ ( x - x * ) ,  
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the axial source distribution in (2.3) is given by 

(5 .2)  

where y* is the axial location of the source. I n  this case H(y) is a triangle of unit base, 
altitude of 2, and hence unit area. For a centrifuge with large aspect ratio, as we will 
consider, this function represents a concentrated source. 

In  order to illustrate the countercurrent flow induced by a source, the centrifuge 
parameters used by Wood & Morton (1980) are used here. The values are given in 
table 1 and were obtained from the papers by May (1977) and Durivault & Louvet 
(1976). 

We will present the calculations at only one speed ; since the approximations in the 
hydrodynamic model are less severe a t  higher speeds, we have chosen 700 m/s. In  
all cases, ten terms were used in the expansion of the particular solution. Numerical 
experiments have indicated that the solution is essentially unchanged if four or more 
terms are used. 

The spatial distribution of the axial mass flux provides a measure of the 
countercurrent flow and is of primary importance for determining separative 
performance, as we discussed in 94. As is shown in (4.1), the axial mass (or molar) 
flux defines the function 9, which in turn defines the coefficients in the isotope gradient 
equation. This is discussed in detail in Cohen (1951), Hoglund et al. (1979), Olander 
(1972) and Soubbaramayer (1979). Figures 2 (a-e) are plots of the axial mass flux as 
a function of radial position measured in scale heights a t  the axial location one quarter 
of the length from the bottom of the rotor. These figures represent the flows driven 
by source distributions of the form 

X ( T  Y) = s o  G ( 4  H(y), (5.3) 

where G ( x )  is given by (5.1) and H(y) by (5.2), and where s* = 8 and y* = ;yo. This 
choice of (x*, y*) is strictly arbitrary. For example, in the case of a centrifuge as shown 
in figure 1 ,  these coordinates could be determined by the location of the bottom scoop, 
as we will show later. Calculations are presented for each of the source types to 
illustrate that  a countercurrent flow is predicted. 

Figure 2 ( a )  represents a source of mass introduced a t  a rate of 1 g/s with half of 
the mass removed a t  each end of the rotor through a hole in the boundary located 
eight scale heights from the rotor wall. This case is antisymmetric about the axial 
midplane so the plot at &o would be the negative of the one presented a t  iyo. 

Figures 2 ( b d )  represent sources of radial, angular and axial momentum respect- 
ively. Each momentum source has a strength of 1 dyn. The radial- and angular- 
momentum sources are antisymmetric about the axial midplane, and the axial 
momentum source is symmetric. The radial-momentum source produces axial fluxes 
two orders of magnitude less than the other momentum sources. Figure 2(e) 
represents a source of energy with a strength of 1 W. The flow is also antisymmetric 
about the axial midplane and is identical in shape but opposite in sign to the flow 
for the angular-momentum source in figure 2 ( c ) .  The relationship between energy and 
angular-momentum sources is apparent from the form of the non-homogeneity in 
( 2 . 2 ) .  

The four sources that are antisymmetric have been differentiated with respect to 
the axial variable according to (2.2). Since these source distributions are even 
functions about the axial midpoint, their derivatives are odd functions and hence the 
antisymmetric property is not unexpected. 
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FIGURE 2.  Axial mass flux (g/mz s) as a function of scale height, at. the axial location Flow 
inducedby : ((I) amasssourveofl  g/s; (h)radial-momentumsourceof1 d y n ;  (rfazimuthal-momentum 
source of 1 dyn;  (d )  axial-momentum source of 1 dyn;  (c)  energy source of 1 W ;  all at s = 8, y = +yo. 
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Length 335.3 cm 
Radius 9.145 cm 
Wall pressure 
Peripheral speed 
Average temperature 300 K 

13.3 kPa (100 torr) 
400, 500, 700 m/s 

TABLE 1 .  Centrifuge parameters 

3 - 3 0 0 0 . 0  

FIGURE 3. Axial mass flux (g/m2 s) as a function of scale height a t  the axial location ;yo. Flow 
induced by a mass source of 1 g/s at. x = 8, y = $yo and a mass sink of 1 g/s at x = 8, y = {yo. 

Figure 3 represents the axial mass flux as a function of scale heights a t  the axial 
midplane for a mass source of 1 g/s located a t  x* = 8 and y* = &o and a mass sink 
of 1 g/s located a t  x* = 8 and y* = $yo. The shape of the source and sink is the same 
as that given by (5.3). In  this case, no mass is removed through the boundaries. 

Figures 4 (a-c) are contour plots of the streamfunction for the radial-momentum, 
angular-momentum and axial-momentum sources respectively, that  are shown in 
figures 2(M).  The symmetry of the flow driven by the radial- and the angular- 
momentum sources is quite clearly demonstrated, as is the antisymmetry of the axial 
momentum source. The radial-momentum source is very weak and the flow is 
confined to very near the source. The contour plot of the streamfunction due to an 
energy source is indistinguishable from that of an angular-momentum source, except 
that the circulation is reversed. 

For the case of mass sources or sinks, a simple analytic form for the streamfunction 
has not been found. I n  this case the streamline plots have to  be generated from the 
velocity field and so far we have been unable to  generate acceptably accurate plots. 

Figure 5 represents the streamlines for flow induced by the presence of a sink of 
angular momentum located a t  x = 4 and y = 0.25. The direction of the flow is 
downwards near x = 0, which corresponds to the rotor wall. This case simulates the 
flow generated by the presence of a stationary bottom scoop at the given location. 

The feed and scoop were modelled in the manner discussed in $ 2 ,  and i t  was 
assumed that the feed-induction process was such that the feed velocity was the sound 
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FIGURE 4(a). For caption see p. 310. 

speed a t  the average temperature, i.e. up = (yRT,,)b x 90 m/s. The four basic 
hydrodynamic solutions discussed in $4 were computed, and the linear combination 
that produces maximum separative work was then determined from linearly com- 
bining the four solutions. For this calculation the hole in the top baffle was one scale 
height in width centred four scale heights from the rotor wall. The results are 
presented in Table 2. 

The idealized maximum separative work available in a centrifuge is discussed in 
many references (e.g. Hoglund et al. 1979) and is given by the formula 

where L is the length, c is the molar density, D is the diffusion coefficient, AM is the 
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FIQURE 4(b) .  For caption see p. 310. 

molecular-weight difference, V is the peripheral velocity, R is the universal gas 
constant and T is the temperature. Based on this equation, the efficiency can be 
defined as 

GU(actua1) 
E =  

SU(max) ’ (5.5) 

where SU(actua1) can be either the measured or predicted separative work. For the 
example we have calculated E = 0.18. 

I n  summary, we have shown how the model of the gas-centrifuge fluid dynamics 
can be coupled with the gradient equation for the isotope distribution of species. 
Furthermore, we have shown how the different countercurrent drive mechanisms can 
be modelled using sources, sinks and boundary conditions. Finally, we have indicated 
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FIGURE 4. Streamlines for flow induced by ( a )  a radial-momentum source, ( b )  an angular- 
momentum source and (c)  an axial-momentum source, all at s = 8, y = &go. 

Separative work (kgtJ/yr) 386 
Feed rate (mg/s) 13.2 
Cut (product/feed) 038 
Temperature difference (K) 8.0 
Scoop drag (dyn) 438.0 

TABLE 2 .  Results of separative work calculations 
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FIGURE 5 .  Streamlines for flow induced by a sink of angular momentum 
simulating the action of the bottom scoop. 

how these different drive mechanisms can be combined to  produce an optimum 
separative work based on the fluid-dynamics solutions. 

The authors would like to recognize the contribution of Dr R. A. Gentry and his 
:o-workers a t  Los Alamos National Laboratory, who first suggested the use of 
internal sources and sinks to  model the action of scoops and feed. The suggestion was 
made in 1973. The work described in this paper was carried out for the U.S. Dept 
of Energy under 17.8. Government Contracts W-7405 eng 26 and DE-AC05- 
760R01779. 
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Appendix A. A smoothing procedure for delta-function sources 
From the discussion in 5 3 i t  should be clear that  some restrictions must be placed 

on the source distribution. I n  order to  be admissible functions, the source distributions 
must allow the necessary differentiation and integration to produce a(x) and ~(y). 
However, with some additional analysis, delta functions can be used. A smoothing 
procedure suggested by J. W. Painter (1977, private communication) can be used to  
invert the differential operator and avoid computational difficulties. 

Recall that  the eigenfunctions fn(x) satisfy the differential equation 

(A 1 )  
I/ K I/ 

Lf,  = ( e5 (eJ fn)  ) = -h2,f,, 

where A, = a, B. Using this equation to replace fn (z )  in (3.10) and unfolding the 
differential operator with five integrations yields 

a, 

c ( t* , (x) -~4fn(o)  [ h ; ( z ) . h ~ ( x ) l - ~ , f n ( ~ )  [h;(x)+2h~(z)1% = ~ ( x ) ,  (A 2) 
n = 1  A n  

and h3(x)  and h,(x) are the zero eigenfunctions discussed in WM. The values of L4fn(0) 
and L, f,(O) are not determined by the boundary conditions but can be determined 
as part of the unknown coefficients. Equation (A2) can be rewritten as 

a, x ""f (x)-Alh;(x)-AAzh;(x) = G(x). 
,=,A; 

Sincef,(co) = L,f,(co) = 0, A ,  and A ,  can be determined by requiring 

-A,hj(co)-A,h; , (co)  = G(co), (A 5a)  

-A,L,h,(co)-A,L,h(co) = [ e x G ' ( x ) ] ~ , ,  E D(co). (A 5 b )  

The method of least squares can be applied to (A4) to  determine the coefficients 
a,. Another integration can be performed on (A 4), but no significant computational 
advantages are gained. 

For the case discussed earlier, where a source of axial momentum is considered, 
(3.6) shows that 

where G(x)  is the radial distribution function. From (A 3), for this case 

= W G ( ~ ) ) z 5 7  

- 
G(x)  = - &[ e-xl 6' G(x3)  dx, dx, dx,, 

where the condition G'(0) = G(0) = 0 has been imposed. 
By using this smoothing procedure, we can compute the flow generated by an 

impulse of axial momentum acting on the ambient case of solid-body isothermal flow. 
I n  particular we assume 

Taking fewer than five integrations of (3.10) does not produce sufficient smoothing 
for producing good numerical results. I n  particular, for (A 5 b ) ,  the integral in (A 6) 

(A 7) W ( X ,  y) = Sod'(~-x*) H ( y ) .  

then provides 
D(x)  = - ~ 

which yields the necessary smoothing. 
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